Part Number Hot Search : 
ON1833 OP04CY 2SB1198K 41FJ020 ST75C530 AL5DA002 CY26049 SC1404
Product Description
Full Text Search
 

To Download AD9626 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 12-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter AD9626
FEATURES
SNR = 64.8 dBFS @ fIN up to 70 MHz @ 250 MSPS ENOB of 10.5 @ fIN up to 70 MHz @ 250 MSPS (-1.0 dBFS) SFDR = 80 dBc @ fIN up to 70 MHz @ 250 MSPS (-1.0 dBFS) Excellent linearity DNL = 0.3 LSB typical INL = 0.7 LSB typical CMOS outputs Single data port at up to 250 MHz Interleaved dual port @ 1/2 sample rate up to 125 MHz 700 MHz full power analog bandwidth On-chip reference, no external decoupling required Integrated input buffer and track-and-hold Low power dissipation 272 mW @ 170 MSPS 364 mW @ 250 MSPS Programmable input voltage range 1.0 V to 1.5 V, 1.25 V nominal 1.8 V analog and digital supply operation Selectable output data format (offset binary, twos complement, Gray code) Clock duty cycle stabilizer Integrated data capture clock
APPLICATIONS
Wireless and wired broadband communications Cable reverse path Communications test equipment Radar and satellite subsystems Power amplifier linearization
FUNCTIONAL BLOCK DIAGRAM
RBIAS PWDN AGND AVDD (1.8V)
REFERENCE CML VIN+ VIN- TRACK-AND-HOLD ADC 12-BIT CORE CLK+ CLK- CLOCK MANAGEMENT 12
AD9626
DRVDD DRGND
OUTPUT 12 STAGING LVDS
Dx11 TO Dx0
OVRA OVRB SERIAL PORT DCO+
07099-001
DCO- RESET SCLK SDIO CSB
Figure 1.
GENERAL DESCRIPTION
The AD9626 is a 12-bit monolithic sampling analog-to-digital converter optimized for high performance, low power, and ease of use. The product operates at up to a 250 MSPS conversion rate and is optimized for outstanding dynamic performance in wideband carrier and broadband systems. All necessary functions, including a track-and-hold (T/H) and voltage reference, are included on the chip to provide a complete signal conversion solution. The ADC requires a 1.8 V analog voltage supply and a differential clock for full performance operation. The digital outputs are CMOS compatible and support either twos complement, offset binary format, or Gray code. A data clock output is available for proper output data timing. Fabricated on an advanced CMOS process, the AD9626 is available in a 56-lead LFCSP, specified over the industrial temperature range (-40C to +85C).
PRODUCT HIGHLIGHTS
1. 2. 3. High Performance--Maintains 64.9 dBFS SNR @ 250 MSPS with a 70 MHz input. Low Power--Consumes only 364 mW @ 250 MSPS. Ease of Use--CMOS output data and output clock signal allow interface to current FPGA technology. The on-chip reference and sample-and-hold provide flexibility in system design. Use of a single 1.8 V supply simplifies system power supply design. Serial Port Control--Standard serial port interface supports various product functions, such as data formatting, clock duty cycle stabilizer, power-down, gain adjust, and output test pattern generation. Pin-Compatible Family--10-bit pin-compatible family offered as the AD9601.
4.
5.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2007 Analog Devices, Inc. All rights reserved.
AD9626 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 DC Specifications ......................................................................... 3 AC Specifications.......................................................................... 4 Digital Specifications ................................................................... 5 Switching Specifications .............................................................. 6 Timing Diagrams.......................................................................... 7 Absolute Maximum Ratings............................................................ 8 Thermal Resistance ...................................................................... 8 ESD Caution.................................................................................. 8 Pin Configurations and Function Descriptions ........................... 9 Equivalent Circuits ......................................................................... 11 Typical Performance Characteristics ........................................... 12 Theory of Operation ...................................................................... 18 Analog Input and Voltage Reference ....................................... 18 Clock Input Considerations...................................................... 19 Power Dissipation and Power-Down Mode ........................... 20 Digital Outputs ........................................................................... 20 Timing--Single Port Mode ....................................................... 21 Timing--Interleaved Mode....................................................... 21 Layout Considerations................................................................... 22 Power and Ground Recommendations ................................... 22 CML ............................................................................................. 22 RBIAS........................................................................................... 22 AD9626 Configuration Using the SPI ..................................... 22 Hardware Interface..................................................................... 23 Configuration Without the SPI ................................................ 23 Memory Map .................................................................................. 25 Reading the Memory Map Table.............................................. 25 Reserved Locations .................................................................... 25 Default Values ............................................................................. 25 Logic Levels................................................................................. 25 Evaluation Board ............................................................................ 27 Outline Dimensions ....................................................................... 33 Ordering Guide .......................................................................... 33
REVISION HISTORY
11/07--Revision 0: Initial Version
Rev. 0 | Page 2 of 36
AD9626 SPECIFICATIONS
DC SPECIFICATIONS
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = -40C, TMAX = +85C, fIN = -1.0 dBFS, full scale = 1.25 V, single port output mode, DCS enabled, unless otherwise noted. Table 1.
Parameter 1 RESOLUTION ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL) Integral Nonlinearity (INL) TEMPERATURE DRIFT Offset Error Gain Error ANALOG INPUTS (VIN+, VIN-) Differential Input Voltage Range 2 Input Common-Mode Voltage Input Resistance (Differential) Input Capacitance POWER SUPPLY AVDD DRVDD Supply Currents IAVDD 3 IDRVDD3/Single Port Mode 4 IDRVDD3/Interleaved Mode 5 Power Dissipation3 Single Port Mode4 Interleaved Mode5 Power-Down Mode Supply Currents IAVDD IDRVDD Standby Mode Supply Currents IAVDD IDRVDD
1 2
Temp
Min
AD9626-170 Typ Max 12 Guaranteed 4.0
Min
AD9626-210 Typ Max 12 Guaranteed 4.0
Min
AD9626-250 Typ Max 12 Guaranteed 4.0
Unit Bits
Full 25C Full 25C Full 25C Full 25C Full Full Full Full Full Full 25C Full Full Full Full Full Full Full Full
-12 1.4 -2.1 0.3 -0.6 0.7 -1.4 8 0.021 0.98 1.25 1.4 4.3 2 1.8 1.8 134 17 15 272 268
+12 +4.5 +0.6 +1.4
-12 1.4 -2.1 0.3 -0.6 0.6 -1.1 8 0.021
+12 +4.5 +0.6 +1.1
-12 1.4 -2.1 0.3 -0.6 0.7 -1.7 8 0.021
+12 +4.5 +0.6 +1.7
mV mV % FS % FS LSB LSB LSB LSB V/C %/C
1.5
0.98
1.25 1.4 4.3 2 1.8 1.8 151 21 18 310 304
1.5
0.98
1.25 1.4 4.3 2 1.8 1.8 178 24 20 364 357
1.5
V p-p V k pF V V mA mA mA mW mW mW
1.7 1.58
1.9 1.9 143 18.5
1.7 1.7
1.9 1.9 161 22
1.7 1.7
1.9 1.9 191 25.5
291
330
390
Full Full Full Full
40 170 19 170
40 170 19 170
22
40 170 19 170
A A mA A
22
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed. The input range is programmable through the SPI, and the range specified reflects the nominal values of each setting. See the Memory Map section. 3 IAVDD and IDRVDD are measured with a -1 dBFS, 10.3 MHz sine input at rated sample rate. 4 Single data rate mode; this is the default mode of the AD9626. 5 Interleaved mode; user-programmable feature. See the Memory Map section.
Rev. 0 | Page 3 of 36
AD9626
AC SPECIFICATIONS
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = -40C, TMAX = +85C, fIN = -1.0 dBFS, full scale = 1.25 V, , Single Port Output mode, DCS enabled, unless otherwise noted. 1 Table 2.
Parameter 2 SNR fIN = 10 MHz fIN = 70 MHz SINAD fIN = 10 MHz fIN = 70 MHz EFFECTIVE NUMBER OF BITS (ENOB) fIN = 10 MHz fIN = 70 MHz WORST HARMONIC (SECOND OR THIRD) fIN = 10 MHz fIN = 70 MHz WORST OTHER (SFDR EXCLUDING SECOND AND THIRD) fIN = 10 MHz fIN = 70 MHz TWO-TONE IMD 140.2 MHz/141.3 MHz @ -7 dBFS 170.2 MHz/171.3 MHz @ -7 dBFS ANALOG INPUT BANDWIDTH
1 2
Temp 25C Full 25C Full 25C Full 25C Full 25C 25C 25C Full 25C Full
Min
AD9626-170 Typ Max 64.5 63.6 64.4 63.0 64.5 63.5 64.2 62.6 10.6 10.5 84 75 79 71
Min
AD9626-210 Typ Max 64.4 63.0 64.2 62.3 64.4 62.8 64.0 62.0 10.6 10.5 86 77 79 73
Min
AD9626-250 Typ Max 64.0 63.8
Unit dB dB dB dB dB dB dB dB Bits Bits dBc dBc dBc dBc
64.0 63.4
10.5 10.5 83 73 80 71
25C Full 25C Full 25C 25C 25C
92 85 92 81 80 700
90 79 87 77
84 76 84 73
dBc dBc dBc dBc dBFS dBc MHz
83 700
83 700
All ac specifications tested by driving CLK+ and CLK- differentially. See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.
Rev. 0 | Page 4 of 36
AD9626
DIGITAL SPECIFICATIONS
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = -40C, TMAX = +85C, fIN = -1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted. Table 3.
Parameter 1 CLOCK INPUTS Logic Compliance Internal Common-Mode Bias Differential Input Voltage Input Voltage Range Input Common-Mode Range High Level Input Voltage (VIH) Low Level Input Voltage (VIL) Input Resistance (Differential) Input Capacitance LOGIC INPUTS Logic 1 Voltage Logic 0 Voltage Logic 1 Input Current (SDIO) Logic 0 Input Current (SDIO) Logic 1 Input Current (SCLK, PDWN, CSB, RESET) Logic 0 Input Current (SCLK, PDWN, CSB, RESET) Input Capacitance LOGIC OUTPUTS 2 High Level Output Voltage Low Level Output Voltage Output Coding
1 2
Temp Full Full Full Full Full Full Full Full Full Full Full Full Full Full Full 25C Full Full
Min
AD9626-170 Typ Max
Min
AD9626-210 Typ Max
Min
AD9626-250 Typ Max
Unit
CMOS/LVDS/LVPECL 1.2 0.2 6 AVDD - AVDD + 0.3 1.6 1.1 AVDD 1.2 3.6 0 0.8 16 20 24 4 0.8 x AVDD 0.2 x AVDD 0 -60 55 0 4
CMOS/LVDS/LVPECL 1.2 0.2 6 AVDD - AVDD + 0.3 1.6 1.1 AVDD 1.2 3.6 0 0.8 16 20 24 4 0.8 x AVDD 0.2 x AVDD 0 -60 55 0 4
CMOS/LVDS/LVPECL 1.2 0.2 6 AVDD - AVDD + 0.3 1.6 1.1 AVDD 1.2 3.6 0 0.8 16 20 24 4 0.8 x AVDD 0.2 x AVDD 0 -60 50 0 4
V V p-p V V V V k pF V V A A A A pF V V
DRVDD - 0.05 DRVDD - 0.05 DRVDD - 0.05 GND + 0.05 GND + 0.05 GND + 0.05 Twos complement, Gray code, or offset binary (default)
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed. LVDS RTERMINATION = 100 .
Rev. 0 | Page 5 of 36
AD9626
SWITCHING SPECIFICATIONS
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = -40C, TMAX = +85C, fIN = -1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted. Table 4.
Parameter (Conditions) Maximum Conversion Rate Minimum Conversion Rate CLK+ Pulse Width High (tCH) CLK+ Pulse Width Low (tCL) Output, Single Data Port Mode 1 Data Propagation Delay (tPD) DCO Propagation Delay (tCPD) Data to DCO Skew (tSKEW) Latency Output, Interleaved Mode 2 Data Propagation Delay (tPDA, tPDB) DCO Propagation Delay (tCPDA, tCPDB) Data to DCO Skew (tSKEWA, tSKEWB ) Latency Standby Recovery Power-Down Recovery Aperture Delay (tA) Aperture Uncertainty (Jitter, tJ)
1 2
Temp Full Full Full Full 25C 25C Full Full 25C 25C Full Full 25C 25C 25C
Min 170 2.65 2.65
AD9626-170 Typ Max 40 2.9 2.9 3.7 3.4 0.3 6 3.5 3.0 0.5 6 250 50 0.1 0.2
Min 210 2.15 2.15
AD9626-210 Typ Max 40 2.4 2.4 3.7 3.4 0.3 6 3.5 3.0 0.5 6 250 50 0.1 0.2
Min 250 1.8 1.8
AD9626-250 Typ Max 40 2.0 2.0 3.7 3.4 0.3 6 3.5 3.0 0.5 6 250 50 0.1 0.2
Unit MSPS MSPS ns ns ns ns ns Cycles ns ns ns Cycles ns s ns ps rms
0
0.55
0
0.55
0
0.55
0
1.1
0
1.1
0
1.1
See Figure 2. See Figure 3.
Rev. 0 | Page 6 of 36
AD9626
TIMING DIAGRAMS
N+1 N N+2 N+3 N+4
tA tCLK = 1/fCLK
CLK+ CLK- DCO- DCO+
N+8 N+5 N+6 N+7
tCPD
tSKEW
N-7 N-6 N-5 N-4 N-3 N-2 N-1 N N+1 N+2
07099-051
tPD
DAX
Figure 2. Single Port Mode
N+1 N
N+2 N+3 N+4
tA tCLK = 1/fCLK
CLK+ CLK- DCO+ DCO-
N+8 N+5 N+6 N+7
tCPDA
tCPDB
tSKEWA tPDA
DAX
N-6
N-4
N-2
N
N+2
tSKEWB tPDB
DBX N-7 N-5 N-3 N-1 N+1
07099-050
Figure 3. Interleaved Mode
Rev. 0 | Page 7 of 36
AD9626 ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter ELECTRICAL AVDD to AGND DRVDD to DRGND AGND to DRGND AVDD to DRVDD Dx0 Through Dx11 to DRGND DCO+/DCO- to DRGND OVRA/OVRB to DGND CLK+ to AGND CLK- to AGND VIN+ to AGND VIN- to AGND SDIO/DCS to DGND PDWN to AGND CSB to AGND SCLK/DFS to AGND ENVIRONMENTAL Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) Junction Temperature Rating -0.3 V to +2.0 V -0.3 V to +2.0 V -0.3 V to +0.3 V -2.0 V to +2.0 V -0.3 V to DRVDD + 0.3 V -0.3 V to DRVDD + 0.3 V -0.3 V to DRVDD + 0.3 V -0.3 V to +3.6 V -0.3 V to +3.6 V -0.3 V to AVDD + 0.2 V -0.3 V to AVDD + 0.2 V -0.3 V to DRVDD + 0.3 V -0.3 V to +3.6 V -0.3 V to +3.6 V -0.3 V to +3.6 V -65C to +125C -40C to +85C 300C 150C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL RESISTANCE
The exposed paddle must be soldered to the ground plane for the LFCSP package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints, maximizing the thermal capability of the package. Table 6.
Package Type 56-Lead LFCSP (CP-56-2) JA 30.4 JC 2.9 Unit C/W
Typical JA and JC are specified for a 4-layer board in still air. Airflow increases heat dissipation, effectively reducing JA. In addition, metal in direct contact with the package leads from metal traces, and through holes, ground, and power planes reduces the JA.
ESD CAUTION
Rev. 0 | Page 8 of 36
AD9626 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
DA5 DA4 DA3 DA2 DA1 DA0 (LSB) DCO+ DCO- DRGND DRVDD AVDD CLK- CLK+ AVDD
DA6 DA7 DA8 DA9 DA10 (MSB) DA11 DRVDD DRGND OVRA (LSB) DB0 DB1 DB2 DB3 DB4 1 2 3 4 5 6 7 8 9 10 11 12 13 14
56 55 54 53 52 51 50 49 48 47 46 45 44 43
42 41 40 39 38 37 36 35 34 33 32 31 30 29
PIN 1 INDICATOR
AD9626
TOP VIEW (Not to Scale)
PIN 0 (EXPOSED PADDLE) = AGND
AVDD AVDD CML AVDD AVDD AVDD VIN- VIN+ AVDD AVDD AVDD RBIAS AVDD PWDN
DB5 DB6 DB7 DB8 DB9 DB10 (MSB) DB11 OVRB DRGND DRVDD SDIO/DCS SCLK/DFS CSB RESET
15 16 17 18 19 20 21 22 23 24 25 26 27 28
Figure 4. Pin Configuration
Table 7. Single Data Rate Mode Pin Function Descriptions
Pin No. 30, 32, 33, 34, 37, 38, 39, 41, 42, 43, 46 7, 24, 47 0 8, 23, 48 35 36 40 44 45 31 28 25 26 27 29 49 50 51 52 53 54 55 56 1 2 Mnemonic AVDD DRVDD AGND 1 DRGND1 VIN+ VIN- CML CLK+ CLK- RBIAS RESET SDIO/DCS SCLK/DFS CSB PWDN DCO- DCO+ DA0 (LSB) DA1 DA2 DA3 DA4 DA5 DA6 DA7 Description 1.8 V Analog Supply. 1.8 V Digital Output Supply. Analog Ground. Digital Output Ground. Analog Input--True. Analog Input--Complement. Common-Mode Output Pin. Enabled through the SPI, this pin provides a reference for the optimized internal bias voltage for VIN+/VIN-. Clock Input--True. Clock Input--Complement. Set Pin for Chip Bias Current. (Place 1% 10 k resistor terminated to ground.) Nominally 0.5 V. CMOS-Compatible Chip Reset (Active Low). Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select (External Pin Mode). Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode). Serial Port Chip Select (Active Low). Chip Power-Down. Data Clock Output--Complement. Data Clock Output--True. Output Port A Output Bit 0 (LSB). Output Port A Output Bit 1. Output Port A Output Bit 2. Output Port A Output Bit 3. Output Port A Output Bit 4. Output Port A Output Bit 5. Output Port A Output Bit 6. Output Port A Output Bit 7.
Rev. 0 | Page 9 of 36
07099-002
AD9626
Pin No. 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1
Mnemonic DA8 DA9 DA10 DA11 (MSB) OVRA DB0 (LSB) DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11 (MSB) OVRB
Description Output Port A Output Bit 8. Output Port A Output Bit 9. Output Port A Output Bit 10. Output Port A Output Bit 11 (MSB). Output Port A Overrange Output Bit. Output Port B Output Bit 0 (LSB). Output Port B Output Bit 1. Output Port B Output Bit 2. Output Port B Output Bit 3. Output Port B Output Bit 4. Output Port B Output Bit 5. Output Port B Output Bit 6. Output Port B Output Bit 7. Output Port B Output Bit 8. Output Port B Output Bit 9. Output Port B Output Bit 10. Output Port B Output Bit 11 (MSB). Output Port B Overrange Output Bit.
AGND and DRGND should be tied to a common quiet ground plane.
Rev. 0 | Page 10 of 36
AD9626 EQUIVALENT CIRCUITS
AVDD
AVDD 26k CSB 1k
1.2V CLK+ 10k 10k CLK-
Figure 5. Clock Inputs
07099-003
Figure 8. Equivalent CSB Input Circuit
AVDD
DRVDD
VIN+ 2k AVDD
BUF
AVDD
BUF 2k BUF
VCML ~1.4V
VIN-
07099-006
07099-004
DRGND
Figure 6. Analog Inputs (VCML = ~1.4 V)
Figure 9. CMOS Outputs (Dx, OVRA, OVRB, DCO+, DCO-)
SCLK/DFS RESET PDWN
1k 30k
DRVDD
1k SDIO/DCS
07099-005
Figure 7. Equivalent SCLK/DFS, RESET, PDWN Input Circuit
Figure 10. Equivalent SDIO/DCS Input Circuit
Rev. 0 | Page 11 of 36
07099-007
07099-052
AD9626 TYPICAL PERFORMANCE CHARACTERISTICS
AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, DCS enabled, TA = 25C, 1.25 V p-p differential input, AIN = -1 dBFS, unless otherwise noted.
0 -20 -40 -60 -80 -100 -120 -140 170MSPS 10.3MHz @ -1.0dBFS SNR: 64.5dB ENOB: 10.6 BITS SFDR: 84dBFS
NUMBER OF HITS
35k 30k 25k 20k 15k 10k 5k 0
AMPLITUDE (dBFS)
0
10
20
30
40
50
60
70
80
N-4 N-3 N-2 N-1
N BIN
N+1 N+2 N+3 N+4
FREQUENCY (MHz)
Figure 11. AD9626-170 64k Point Single-Tone FFT; 170 MSPS, 10.3 MHz
Figure 14. AD9626-170 Grounded Input Histogram; 170 MSPS
0 -20 -40 -60 -80 -100 -120 -140 170MSPS 70.3MHz @ -1.0dBFS SNR: 64.4dB ENOB: 10.5 BITS SFDR: 79dBFS
SNR/SFDR (dB)
90 SFDR (+85C) 85 80 75 SFDR (-40C) 70 65 60 SNR (+85C) 55 50 SNR (-40C)
07099-024 07099-025
SFDR (+25C)
AMPLITUDE (dBFS)
SNR (+25C)
07099-021
0
10
20
30
40
50
60
70
80
0
50
100
150
200
250
300
350
400
450
500
FREQUENCY (MHz)
ANALOG INPUT FREQUENCY (MHz)
Figure 12. AD9626-170 64k Point Single-Tone FFT; 170 MSPS, 70.3 MHz
Figure 15. AD9626-170 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and Temperature with 1.25 V p-p Full Scale; 170 MSPS
100
0 -20 -40 -60 -80 -100 -120 -140 170MSPS 140.3MHz @ -1.0dBFS SNR: 63.7dB ENOB: 10.4 BITS SFDR: 80dBc
SNR/SFDR (dB)
90 SFDR (dBFS) 80 70 SNR (dBFS) 60 50 40 30 SFDR (dBc) 20 10 SNR (dB)
AMPLITUDE (dBFS)
0
07099-022
10
20
30
40
50
60
70
80
0 90
80
70
60
50
40
30
20
10
0
FREQUENCY (MHz)
AMPLITUDE (-dBFS)
Figure 13. AD9626-170 64k Point Single-Tone FFT; 170 MSPS, 140.3 MHz
Figure 16. AD9626-170 SNR/SFDR vs. Input Amplitude; 140.3 MHz
Rev. 0 | Page 12 of 36
07099-023
07099-020
AD9626
1.0 0.8 0.6 80 0.4
SNR/SFDR (dB) INL (LSB)
90 85 SFDR (+25C)
0.2 0 -0.2 -0.4
75 70 SNR (-40C) 65 60 SNR (+85C) SFDR (+85C)
SFDR (-40C)
-0.6 -0.8
07099-026
SNR (+25C) 55 50
0
512
1024
1536
2048
2560
3072
3584
4096
0
50
100
150
200
250
300
350
400
450
500
OUTPUT CODE
ANALOG INPUT FREQUENCY (MHz)
Figure 17. AD9626-170 INL; 170 MSPS
Figure 20. SNR/SFDR vs. Analog Input Frequency, Interleaved Mode vs. Temperature
0 -20 -40 -60 -80 -100 -120 -140 210MSPS 10.3MHz @ -1.0dBFS SNR: 64.5dB ENOB: 10.6 BITS SFDR: 86dBc
400 350 300 250 200 150 100 50 0 IDVDD (mA) IAVDD (mA)
AMPLITUDE (dBFS)
TOTAL POWER (mW)
CURRENT (mA)
07099-027
5
25
45
65
85
105 125 145 165 185 205 225 245
0
20
40
60
80
100
SAMPLE RATE (MSPS)
FREQUENCY (MHz)
Figure 18. AD9626-170 Power Supply Current vs. Sample Rate
Figure 21. AD9626-210 64k Point Single-Tone FFT; 210 MSPS, 10.3 MHz
1.0 0.8 0.6
AMPLITUDE (dBFS)
0 -20 -40 -60 -80 -100 -120 -140 210MSPS 70.3MHz @ -1.0dBFS SNR: 64.2dB ENOB: 10.5 BITS SFDR: 79dBc
0.4
DNL (LSB)
0.2 0 -0.2 -0.4 -0.6 -0.8
07099-028
0
512
1024
1536
2048
2560
3072
3584
4096
0
20
40
60
80
100
OUTPUT CODE
FREQUENCY (MHz)
Figure 19. AD9626-170 DNL; 170 MSPS
Figure 22. AD9626-210 64k Point Single-Tone FFT; 210 MSPS, 70.3 MHz
Rev. 0 | Page 13 of 36
07099-031
-1.0
07099-030
07099-029
-1.0
AD9626
0 -20 -40 -60 -80 -100 -120 -140 210MSPS 170.3MHz @ -1.0dBFS SNR: 63.23dB ENOB: 10.4 BITS SFDR: 78dBc
SNR/SFDR (dB)
100 90 80 70 60 50 40 30 SNR (dB) 20 10
07099-032
SFDR (dBFS)
AMPLITUDE (dBFS)
SNR (dBFS)
SFDR (dBc)
0
20
40
60
80
100
80
70
60
50
40
30
20
10
0
FREQUENCY (MHz)
AMPLITUDE (-dBFS)
Figure 23. AD9626-210 64k Point Single-Tone FFT; 210 MSPS, 170.3 MHz
Figure 26. AD9626-210 SNR/SFDR vs. Input Amplitude; 210 MSPS, 170.3 MHz
35k 30k 25k
NUMBER OF HITS
1.0 0.8 0.6 0.4
INL (LSB)
20k 15k 10k 5k 0
0.2 0 -0.2 -0.4 -0.6 -0.8
07099-033
N-3 N-2 N-1
N
N+1 N+2 N+3 N+4 N+5 BIN
0
512
1024
1536
2048
2560
3072
3584
4096
OUTPUT CODE
Figure 24. AD9626-210 Grounded Input Histogram; 210 MSPS
Figure 27. AD9626-210 INL; 210 MSPS
90 85 80
SNR/SFDR (dB)
400 350 SFDR (+85C) 300
CURRENT (mA)
TOTAL POWER (mW)
75 70 SNR (-40C) 65 60 55 50 SNR (+85C) SNR (+25C) SFDR (+25C) SFDR (-40C)
250 200 150 100 50 0 IDVDD (mA) IAVDD (mA)
07099-034
0
50
100
150
200
250
300
350
400
450
500
5
25
45
65
85
105 125 145 165 185 205 225 245
ANALOG INPUT FREQUENCY (MHz)
SAMPLE RATE (MSPS)
Figure 25. AD9626-210 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and Temperature with 1.25 V p-p Full Scale; 210 MSPS
Figure 28. AD9626-210 Power Supply Current vs. Sample Rate
Rev. 0 | Page 14 of 36
07099-037
07099-036
-1.0
07099-035
0 90
AD9626
1.0 0.8 0.6
AMPLITUDE (dBFS)
0 -20 -40 -60 -80 -100 -120 -140 250MSPS 170MHz @ -1.0dBFS SNR: 62.9dB ENOB: 10.2 BITS SFDR: 72dBc
0.4
DNL (LSB)
0.2 0 -0.2 -0.4 -0.6 -0.8
07099-038
0
512
1024
1536
2048
2560
3072
3584
4096
0
20
40
60
80
100
120
OUTPUT CODE
FREQUENCY (MHz)
Figure 29. AD9626-210 DNL; 210 MSPS
Figure 32. AD9626-250 64k Point Single-Tone FFT; 250 MSPS, 170.3 MHz
0 -20 -40 -60 -80 -100 -120 -140 250MSPS 10.3MHz @ -1.0dBFS SNR: 64.0dB ENOB: 10.5 BITS SFDR: 83dBc
NUMBER OF HITS
35k 30k 25k 20k 15k 10k 5k 0
AMPLITUDE (dBFS)
07099-039
0
20
40
60
80
100
120
N-4 N-3 N-2 N-1
N BIN
N+1 N+2 N+3 N+4
FREQUENCY (MHz)
Figure 30. AD9626-250 64k Point Single-Tone FFT; 250 MSPS, 10.3 MHz
Figure 33. AD9626-250 Grounded Input Histogram; 250 MSPS
0 -20 -40 -60 -80 -100 -120 -140 250MSPS 70.3MHz @ -1.0dBFS SNR: 63.8dB ENOB: 10.6 BITS SFDR: 80dBc
SNR/SFDR (dB)
90 85 SFDR (+25C) 80 75 70 SNR (-40C) 65 60 55 50 SNR (+85C) SFDR (-40C) SFDR (+85C)
AMPLITUDE (dBFS)
SNR (+25C)
07099-057
0
20
40
60
80
100
120
0
50
100
150
200
250
300
350
400
450
500
FREQUENCY (MHz)
ANALOG INPUT FREQUENCY (MHz)
Figure 31. AD9626-250 64k Point Single-Tone FFT; 250 MSPS, 70.3 MHz
Figure 34. AD9626-250 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and Temperature with 1.25 V p-p Full Scale; 250 MSPS
Rev. 0 | Page 15 of 36
07099-042
07099-041
07099-040
-1.0
AD9626
100 90 80 70
SNR/SFDR (dB) DNL (LSB)
1.0 SFDR (dBFS) 0.8 0.6 0.4 SNR (dBFS) 0.2 0 -0.2 -0.4 SNR (dB) -0.6 -0.8
07099-043
60 50 40 30 20 10 0 90
SFDR (dBc)
80
70
60
50
40
30
20
10
0
0
512
1024
1536
2048
2560
3072
3584
4096
AMPLITUDE (-dBFS)
OUTPUT CODE
Figure 35. AD9626-250 SNR/SFDR vs. Input Amplitude; 250 MSPS, 170.3 MHz
Figure 38. AD9626-250 DNL; 250 MSPS
1.0 0.8 0.6 0.4
INL (LSB)
90 SFDR 80 70
SNR/SFDR (dB)
60 50 40 30 20 10
0.2 0 -0.2 -0.4 -0.6 -0.8
07099-044
SNR
0
512
1024
1536
2048
2560
3072
3584
4096
95
115
135
155
175
195
215
235
255
275
OUTPUT CODE
SAMPLE RATE (MSPS)
Figure 36. AD9626-250 INL; 250 MSPS
Figure 39. SNR/SFDR vs. Sample Rate; 250 MSPS, 170.3 MHz @ -1 dBFS
2.5
450 400
2.0
350
CURRENT (mA)
TOTAL POWER (mW)
1.5
AD9626-250
300
GAIN (%FS)
250 200 150 100 50 0 IDVDD (mA) IAVDD (mA)
AD9626-210 1.0 AD9626-170 0.5
0
5
25
45
65
85
105 125 145 165 185 205 225 245
07099-045
-40
-20
0
20
40
60
80
100
120
SAMPLE RATE (MSPS)
TEMPERATURE (C)
Figure 37. AD9626 Power Supply Current vs. Sample Rate
Figure 40. Gain vs. Temperature
Rev. 0 | Page 16 of 36
07099-048
-0.5 -60
07099-047
-1.0
0 75
07099-046
-1.0
AD9626
6.0 5.5 AD9626-250 5.0
OFFSET (mV)
4.5 4.0
AD9626-210 AD9626-170
3.5 3.0 2.5 2.0 -40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90
TEMPERATURE (C)
Figure 41. Offset vs. Temperature
07099-049
Rev. 0 | Page 17 of 36
AD9626 THEORY OF OPERATION
The AD9626 architecture consists of a front-end sample-andhold amplifier (SHA) followed by a pipelined switched capacitor ADC. The quantized outputs from each stage are combined into a final 12-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample, while the remaining stages operate on preceding samples. Sampling occurs on the rising edge of the clock. Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched capacitor DAC and interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC. The input stage contains a differential SHA that can be ac- or dc-coupled. The output-staging block aligns the data, carries out the error correction, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During powerdown, the output buffers go into a high impedance state.
1V p-p 49.9 499 499 523 0.1F 33 499 33 AVDD VIN+
AD8138
20pF
AD9626
VIN-
07099-008
CML
Figure 42. Differential Input Configuration Using the AD8138
At input frequencies in the second Nyquist zone and above, the performance of most amplifiers may not be adequate to achieve the true performance of the AD9626. This is especially true in IF undersampling applications where frequencies in the 70 MHz to 100 MHz range are being sampled. For these applications, differential transformer coupling is the recommended input configuration. The signal characteristics must be considered when selecting a transformer. Most RF transformers saturate at frequencies below a few millihertz, and excessive signal power can also cause core saturation, which leads to distortion. In any configuration, the value of the shunt capacitor, C, is dependent on the input frequency and may need to be reduced or removed.
15 1.25V p-p 50 2pF VIN+
ANALOG INPUT AND VOLTAGE REFERENCE
The analog input to the AD9626 is a differential buffer. For best dynamic performance, the source impedances driving VIN+ and VIN- should be matched such that common-mode settling errors are symmetrical. The analog input is optimized to provide superior wideband performance and requires that the analog inputs be driven differentially. A wideband transformer, such as Mini-Circuits(R) ADT1-1WT, can provide the differential analog inputs for applications that require a single-ended-to-differential conversion. Both analog inputs are self-biased by an on-chip resistor divider to a nominal 1.4 V. An internal differential voltage reference creates positive and negative reference voltages that define the 1.25 V p-p fixed span of the ADC core. This internal voltage reference can be adjusted by means of SPI control. See the AD9626 Configuration Using the SPI section for more details.
AD9626
VIN-
07099-009
15 0.1F
Figure 43. Differential Transformer-Coupled Configuration
As an alternative to using a transformer-coupled input at frequencies in the second Nyquist zone, the AD8352 differential driver can be used (see Figure 44).
VCC
0.1F 0.1F ANALOG INPUT 0 16 1 2 200 CD RD RG 3 ANALOG INPUT 0.1F 0 4 5 14 0.1F
07099-010
8, 13 11
0.1F
R VIN+ C R
Differential Input Configurations
Optimum performance is achieved while driving the AD9626 in a differential input configuration. For baseband applications, the AD8138 differential driver provides excellent performance and a flexible interface to the ADC. The output common-mode voltage of the AD8138 is easily set to AVDD/2 + 0.5 V, and the driver can be configured in a Sallen-Key filter topology to provide band limiting of the input signal.
AD8352
10 0.1F
200
AD9626
VIN- CML
0.1F
Figure 44. Differential Input Configuration Using the AD8352
Rev. 0 | Page 18 of 36
AD9626
CLOCK INPUT CONSIDERATIONS
For optimum performance, the AD9626 sample clock inputs (CLK+ and CLK-) should be clocked with a differential signal. This signal is typically ac-coupled into the CLK+ pin and the CLK- pin via a transformer or capacitors. These pins are biased internally and require no additional bias. Figure 45 shows one preferred method for clocking the AD9626. The low jitter clock source is converted from single-ended to differential using an RF transformer. The back-to-back Schottky diodes across the secondary transformer limit clock excursions into the AD9626 to approximately 0.8 V p-p differential. This helps prevent the large voltage swings of the clock from feeding through to other portions of the AD9626 and preserves the fast rise and fall times of the signal, which are critical to low jitter performance.
MINI-CIRCUITS ADT1-1WT, 1:1Z 0.1F XFMR 100 0.1F 0.1F SCHOTTKY DIODES: HSM2812
In some applications, it is acceptable to drive the sample clock inputs with a single-ended CMOS signal. In such applications, CLK+ should be directly driven from a CMOS gate, and the CLK- pin should be bypassed to ground with a 0.1 F capacitor in parallel with a 39 k resistor (see Figure 48). Although the CLK+ input circuit supply is AVDD (1.8 V), this input is designed to withstand input voltages up to 3.3 V, making the selection of the drive logic voltage very flexible.
0.1F
CLK
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
OPTIONAL 0.1F 100
CLOCK INPUT
50*
CMOS DRIVER
CLK
CLK+
AD9626
CLK-
ADC
0.1F
0.1F
*50 RESISTOR IS OPTIONAL.
39k
07099-014
0.1F CLOCK INPUT 50
Figure 48. Single-Ended 1.8 V CMOS Sample Clock
CLK+
AD9626
CLK-
07099-011
ADC
CLOCK INPUT
0.1F CLK 50*
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
OPTIONAL 0.1F 100
Figure 45. Transformer-Coupled Differential Clock
CMOS DRIVER CLK
CLK+
If a low jitter clock is available, another option is to ac couple a differential PECL signal to the sample clock input pins, as shown in Figure 46. The AD9510/AD9511/AD9512/AD9513/ AD9514/AD9515 family of clock drivers offers excellent jitter performance.
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
CLOCK INPUT 0.1F CLK PECL DRIVER CLK 50* 50* 240 240
07099-012
0.1F
0.1F
AD9626
CLK-
07099-015
ADC
*50 RESISTOR IS OPTIONAL.
Figure 49. Single-Ended 3.3 V CMOS Sample Clock
Clock Duty Cycle Considerations
0.1F CLK+ 100 0.1F
CLOCK INPUT
0.1F
AD9626
CLK-
ADC
*50 RESISTORS ARE OPTIONAL.
Figure 46. Differential PECL Sample Clock
CLOCK INPUT
0.1F CLK
AD9510/AD9511/ AD9512/AD9513/ AD9514/AD9515
0.1F CLK+ 100 0.1F
CLOCK INPUT 50*
0.1F 50*
LVDS DRIVER CLK
ADC AD9626
CLK-
07099-013
Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to the clock duty cycle. Commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics. The AD9626 contains a duty cycle stabilizer (DCS) that retimes the nonsampling edge, providing an internal clock signal with a nominal 50% duty cycle. This allows a wide range of clock input duty cycles without affecting the performance of the AD9626. When the DCS is on, noise and distortion performance are nearly flat for a wide range of duty cycles. However, some applications may require the DCS function to be off. If so, keep in mind that the dynamic range performance can be affected when operated in this mode. See the AD9626 Configuration Using the SPI section for more details on using this feature. The duty cycle stabilizer uses a delay-locked loop (DLL) to create the nonsampling edge. As a result, any changes to the sampling frequency require approximately eight clock cycles to allow the DLL to acquire and lock to the new rate.
*50 RESISTORS ARE OPTIONAL.
Figure 47. Differential LVDS Sample Clock
Rev. 0 | Page 19 of 36
AD9626
Clock Jitter Considerations
High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR for a full-scale input signal at a given input frequency (fA) due only to aperture jitter (tJ) can be calculated by SNR Degradation = 20 x log10[1/2 x x fA x tJ] In this equation, the rms aperture jitter represents the root mean square of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specifications. IF undersampling applications are particularly sensitive to jitter (see Figure 50). The clock input should be treated as an analog signal in cases where aperture jitter may affect the dynamic range of the AD9626. Power supplies for clock drivers should be separated from the ADC output driver supplies to avoid modulating the clock signal with digital noise. Low jitter, crystal controlled oscillators make the best clock sources. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step. Refer to the AN-501 Application Note and the AN-756 Application Note for more in-depth information about jitter performance as it relates to ADCs (visit www.analog.com).
130 120 110 100
SNR (dB)
and internal reference remain on, but digital circuitry is powered down. Upon reactivating the clock, the AD9626 resumes normal operation after allowing for the pipeline latency.
DIGITAL OUTPUTS
Digital Outputs and Timing
The off-chip drivers on the AD9626 are CMOS-compatible output levels. The outputs are biased from a separate supply (DRVDD), allowing isolation from the analog supply and easy interface to external logic. The outputs are CMOS devices that swing from ground to DRVDD (with no dc load). It is recommended to minimize the capacitive load the ADC drives by keeping the output traces short (<1 inch, for a total CLOAD < 5 pF). When operating in CMOS mode, it is also recommended to place low value (20 ) series damping resistors on the data lines to reduce switching transient effects on performance. The format of the output data is offset binary by default. An example of the output coding format can be found in Table 11. If it is desired to change the output data format to twos complement, see the AD9626 Configuration Using the SPI section. An output clock signal is provided to assist in capturing data from the AD9626. The DCO+/DCO- signal is used to clock the output data and is equal to the sampling clock (CLK) rate in single port mode, and one-half the clock rate in interleaved output mode. See the timing diagrams shown in Figure 2 and Figure 3 for more information.
RMS CLOCK JITTER REQUIREMENT
16 BITS 14 BITS 12 BITS 10 BITS 8 BITS 0.125ps 0.25ps 0.5ps 1.0ps 2.0ps
90 80 70 60 50 40 30
Out-of-Range
An out-of-range condition exists when the analog input voltage is beyond the input range of the ADC. OVRA/OVRB is a digital output that is updated along with the data output corresponding to the particular sampled input voltage. Thus, OVRA/OVRB has the same pipeline latency as the digital data. OVRA/OVRB is low when the analog input voltage is within the analog input range and high when the analog input voltage exceeds the input range, as shown in Figure 51. OVRA/OVRB remains high until the analog input returns to within the input range and another conversion is completed. By logically AND-ing OVRA/OVRB with the MSB and its complement, overrange high or underrange low conditions can be detected.
OVRA/OVRB DATA OUTPUTS 1 0 0 1111 1111 1111 1111 1111 1111 1111 1111 1110 OVRA/ OVRB -FS + 1/2 LSB 0 0 1 0000 0000 0001 0000 0000 0000 0000 0000 0000 -FS -FS - 1/2 LSB +FS +FS - 1/2 LSB
07099-017
1
10 100 ANALOG INPUT FREQUENCY (MHz)
1000
Figure 50. Ideal SNR vs. Input Frequency and Jitter for 0 dBFS input Signal
POWER DISSIPATION AND POWER-DOWN MODE
As shown in Figure 37, the power dissipated by the AD9626 is proportional to its sample rate. The digital power dissipation does not vary much because it is determined primarily by the DRVDD supply and bias current of the LVDS output drivers. By asserting PDWN (Pin 29) high, the AD9626 is placed in standby mode or full power-down mode, as determined by the contents of Serial Port Register 08. Reasserting the PDWN pin low returns the AD9626 into its normal operational mode. An additional standby mode is supported by means of varying the clock input. When the clock rate falls below 50 MHz, the AD9626 assumes a standby state. In this case, the biasing network
07099-016
+FS - 1 LSB
Figure 51. OVRA/OVRB Relation to Input Voltage and Output Data
Rev. 0 | Page 20 of 36
AD9626
TIMING--SINGLE PORT MODE
In single port mode, the CMOS output data is available from Data Port A (DA0 to DA11). The outputs for Port B (DB0 to DB11) are unused, and are high impedance in this mode. The Port A outputs and the differential output data clock (DCO+/DCO-) switch nearly simultaneously during the rising edge of DCO+. In this mode, it is recommended to use the rising edge of DCO- to capture the data from Port A. The setup and hold time depends on the input sample clock period, and is approximately 1/fCLK tSKEW. mended to use the rising edge of DCO+ to capture the data from Port A, and the rising edge of DCO- to capture the data from Port B. In both cases, the setup and hold time depends on the input sample clock period, and both are approximately 2/fS tSKEW.
fS/2 Spurious
Because the AD9626 output data rate is at one-half the sampling frequency in interleaved output mode, there is significant fS/2 energy in the outputs of the part, and there will be significant energy in the ADC output spectrum at fS /2. Care must be taken to be certain that this fS/2 energy does not couple into either the clock circuit or the analog inputs of the AD9626. When fS/2 energy is coupled in this fashion, it appears as a spurious tone reflected around fS/4, 3fS/4, 5fS/4, and so on. For example, in a 125 MSPS sampling application with a 90 MHz single-tone analog input, this energy generates a tone at 97.5 MHz. [(3 x 125 MSPS/4 - 90 MHz) + 3 x 125 MSPS/4] Depending on the relationship of the IF frequency to the center of the Nyquist zone, this spurious tone may or may not be in the user's band of interest. Some residual fS/2 energy is present in the AD9601, and the level of this spur is typically below the level of the harmonics at clock rates. Figure 20 shows a plot of the fS/2 spur level vs. the analog input frequency for the AD9626-250. For the specifications provided in Table 2, the fS/2 spur effect is not a factor, as the device is specified in single port output mode.
TIMING--INTERLEAVED MODE
In interleaved mode, the output data of the AD9626 is demultiplexed onto two data port buses, Port A (DA0 to DA11) and Port B (DB0- to DB11). The output data and differential data capture clock switch at one-half the rate of the sample clock input (CLK+/CLK-), increasing the setup and hold time for the external data capture circuit relative to single port mode (see Figure 3, interleaved mode timing diagram). The two ports switch on alternating sample clock cycles, with the data for Port A being valid during the rising edge of DCO+, and the data for Port B being valid during the rising edge of DCO-. The pipeline latency for both ports is six sample clock cycles. Due to the random nature of the /2 circuit that generates the timing for the output stage in interleaved mode, the first data sample during power up can be assigned to either Data Port A or Port B. The user cannot control the polarity of the output data clock relative to the input sample clock. In this mode, it is recom-
Rev. 0 | Page 21 of 36
AD9626 LAYOUT CONSIDERATIONS
POWER AND GROUND RECOMMENDATIONS
When connecting power to the AD9626, it is recommended that two separate supplies be used: one for analog (AVDD, 1.8 V nominal) and one for digital (DRVDD, 1.8 V nominal). If only a single 1.8 V supply is available, it is routed to AVDD first, then tapped off and isolated with a ferrite bead or filter choke with decoupling capacitors proceeding connection to DRVDD. The user can employ several different decoupling capacitors to cover both high and low frequencies. These should be located close to the point of entry at the PC board level and close to the parts with minimal trace length. A single PCB ground plane is sufficient when using the AD9626. With proper decoupling and smart partitioning of analog, digital, and clock sections of the PCB, optimum performance is easily achieved.
RBIAS
The AD9626 requires the user to place a 10 k resistor between the RBIAS pin and ground. This resistor sets the master current reference of the ADC core and should have at least a 1% tolerance.
AD9626 CONFIGURATION USING THE SPI
The AD9626 SPI allows the user to configure the converter for specific functions or operations through a structured register space inside the ADC. This gives the user added flexibility to customize device operation depending on the application. Addresses are accessed (programmed or read back) serially in one-byte words. Each byte can be further divided down into fields, which are documented in the Memory Map section. There are three pins that define the serial port interface or SPI to this particular ADC. They are the SPI SCLK/DFS, SPI SDIO/DCS, and CSB pins. The SCLK/DFS (serial clock) is used to synchronize the read and write data presented the ADC. The SDIO/DCS (serial data input/output) is a dual-purpose pin that allows data to be sent and read from the internal ADC memory map registers. The CSB is an active low control that enables or disables the read and write cycles (see Table 8). Table 8. Serial Port Pins
Mnemonic SCLK Function SCLK (Serial Clock) is the serial shift clock in. SCLK is used to synchronize serial interface reads and writes. SDIO (Serial Data Input/Output) is a dual-purpose pin. The typical role for this pin is an input and output depending on the instruction being sent and the relative position in the timing frame. CSB (Chip Select Bar) is an active low control that gates the read and write cycles. Master Device Reset. When asserted, device assumes default settings. Active low.
Exposed Paddle Thermal Heat Slug Recommendations
It is required that the exposed paddle on the underside of the ADC be connected to analog ground (AGND) to achieve the best electrical and thermal performance of the AD9626. An exposed, continuous copper plane on the PCB should mate to the AD9626 exposed paddle, Pin 0. The copper plane should have several vias to achieve the lowest possible resistive thermal path for heat dissipation to flow through the bottom of the PCB. These vias should be solder-filled or plugged. To maximize the coverage and adhesion between the ADC and PCB, partition the continuous plane by overlaying a silkscreen on the PCB into several uniform sections. This provides several tie points between the two during the reflow process. Using one continuous plane with no partitions guarantees only one tie point between the ADC and PCB. See Figure 52 for a PCB layout example. For detailed information on packaging and the PCB layout of chip scale packages, see Application Note AN-772, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package.
SILKSCREEN PARTITION PIN 1 INDICATOR
SDIO
CSB RESET
The falling edge of the CSB, in conjunction with the rising edge of the SCLK, determines the start of the framing. An example of the serial timing and its definitions can be found in Figure 53 and Table 10. During an instruction phase, a 16-bit instruction is transmitted. Data then follows the instruction phase and is determined by the W0 and W1 bits, which is 1 or more bytes of data. All data is composed of 8-bit words. The first bit of each individual byte of serial data indicates whether this is a read or write command. This allows the serial data input/output (SDIO) pin to change direction from an input to an output. Data can be sent in MSB or in LSB first mode. MSB first is default on power-up and can be changed by changing the configuration register. For more information about this feature and others, see Interfacing to High Speed ADCs via SPI at www.analog.com.
Figure 52. Typical PCB Layout
CML
The CML pin should be decoupled to ground with a 0.1 F capacitor, as shown in Figure 54.
07099-018
Rev. 0 | Page 22 of 36
AD9626
HARDWARE INTERFACE
The pins described in Table 8 comprise the physical interface between the user's programming device and the serial port of the AD9626. All serial pins are inputs, which is an open-drain output and should be tied to an external pull-up or pull-down resistor (suggested value of 10 k). This interface is flexible enough to be controlled by either PROMS or PIC mirocontrollers as well. This provides the user with an alternate method to program the ADC other than a SPI controller. If the user chooses not to use the SPI interface, some pins serve a dual function and are associated with a specific function when strapped externally to AVDD or ground during device poweron. The Configuration Without the SPI section describes the strappable functions supported on the AD9626.
tDS tS
CSB
CONFIGURATION WITHOUT THE SPI
In applications that do not interface to the SPI control registers, the SPI SDIO/DCS and SPI SCLK/DFS pins can alternately serve as standalone CMOS-compatible control pins. When the device is powered up, it is assumed that the user intends to use the pins as static control lines for the duty cycle stabilizer. In this mode, the SPI CSB chip select should be connected to ground, which disables the serial port interface. Table 9. Mode Selection
Mnemonic SPI SDIO/DCS SPI SCLK/DFS External Voltage AVDD AGND AVDD AGND Configuration Duty cycle stabilizer enabled Duty cycle stabilizer disabled Twos complement enabled Offset binary enabled
tHI tDH tLO
tCLK
tH
SCLK DON'T CARE
DON'T CARE
SDIO DON'T CARE
R/W
W1
W0
A12
A11
A10
A9
A8
A7
D5
D4
D3
D2
D1
D0
DON'T CARE
Figure 53. Serial Port Interface Timing Diagram
Rev. 0 | Page 23 of 36
07099-019
AD9626
Table 10. Serial Timing Definitions
Parameter tDS tDH tCLK tS tH tHI tLO tEN_SDIO tDIS_SDIO Timing (minimum, ns) 5 2 40 5 2 16 16 1 5 Description Setup time between the data and the rising edge of SCLK Hold time between the data and the rising edge of SCLK Period of the clock Setup time between CSB and SCLK Hold time between CSB and SCLK Minimum period that SCLK should be in a logic high state Minimum period that SCLK should be in a logic low state Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK falling edge (not shown in Figure 53) Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK rising edge (not shown in Figure 53)
Table 11. Output Data Format
Offset Binary Output Mode D11 to D0 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 Twos Complement Mode D11 to D0 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 Gray Code Mode (SPI Accessible) D11 to D0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Input (V) VIN+ - VIN- VIN+ - VIN- VIN+ - VIN- VIN+ - VIN- VIN+ - VIN-
Condition (V) < 0.62 = 0.62 =0 = 0.62 > 0.62 + 0.5 LSB
OR 1 0 0 0 1
Rev. 0 | Page 24 of 36
AD9626 MEMORY MAP
READING THE MEMORY MAP TABLE
Each row in the memory map table has eight address locations. The memory map is roughly divided into three sections: chip configuration register map (Address 0x00 to Address 0x02), transfer register map (Address 0xFF), and program register map (Address 0x08 to Address 0x2A). The Addr (Hex) column of the memory map indicates the register address in hexadecimal, and the Default Value (Hex) column shows the default hexadecimal value that is already written into the register, The Bit 7 (MSB) column is the start of the default hexadecimal value given. For example, Hexadecimal Address 0x09, clock, has a hexadecimal default value of 0x01. This means Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in binary. The default value enables the duty cycle stabilizer. Overwriting this default so that Bit 0 = 0 disables the duty cycle stabilizer. For more information on this and other functions, consult the Interfacing to High Speed ADCs via SPI user manual at www.analog.com. Table 12. Memory Map Register
Addr Bit 7 (Hex) Parameter Name (MSB) Chip Configuration Registers 00 chip_port_config 0 Bit 6 LSB first Bit 5 Soft reset Bit 4 1 Bit 3 1 Bit 2 Soft reset Bit 1 LSB first Bit 0 (LSB) 0 Default Value (Hex) 0x18 Default Notes/ Comments The nibbles should be mirrored by the user so that LSB or MSB first mode registers correctly, regardless of shift mode. Default is unique chip ID, different for each device. This is a read-only register. Child ID used to differentiate graded devices.
RESERVED LOCATIONS
Undefined memory locations should not be written to other than their default values suggested in this data sheet. Addresses that have values marked as 0 should be considered reserved and have a 0 written into their registers during power-up.
DEFAULT VALUES
Coming out of reset, critical registers are preloaded with default values. These values are indicated in Table 12. Other registers do not have default values and retain the previous value when exiting reset.
LOGIC LEVELS
An explanation of various registers follows: "Bit is set" is synonymous with "bit is set to Logic 1" or "writing Logic 1 for the bit." Similarly, "clear a bit" is synonymous with "bit is set to Logic 0" or "writing Logic 0 for the bit."
01
chip_id
8-bit chip ID, Bits[7:0] AD9626 = 0x3c
Readonly
02
chip_grade
0
0
0
Speed grade: 00 = 170 MSPS 01 = 210 MSPS 10 = 250 MSPS 0 0
X
X
X
Readonly
Transfer Register FF device_update
0
0
0
0
0
SW transfer
0x00
Synchronously transfers data from the master shift register to the slave. Determines various generic modes of chip operation.
ADC Functions 08 modes
0
0
PDWN: 0 = full (default) 1= standby
0
0
Internal power-down mode: 000 = normal (power-up, default) 001 = full power-down 010 = standby 011 = normal (power-up) Note: external PDWN pin overrides this setting
0x00
Rev. 0 | Page 25 of 36
AD9626
Addr (Hex) 09 Parameter Name clock Bit 7 (MSB) 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 (LSB) Duty cycle stabilizer: 0= disabled 1= enabled (default) Default Value (Hex) 0x01 Default Notes/ Comments
OD
test_io
Reset PN23 gen: 1 = on 0 = off (default)
Reset PN9 gen: 1 = on 0 = off (default)
OF
ain_config
0
0
0
0
14
output_mode
0
0
16
output_phase
17
flex_output_delay
Output clock polarity 1= inverted 0= normal (default) Output delay enable: 0= enable 1= disable
0
Interleave output mode: 1= enabled 0= disabled (default) 0
Output enable: 0= enable (default) 1= disable 0
Output test mode: 0000 = off (default) 0001 = midscale short 0010 = +FS short 0011 = -FS short 0100 = checker board output 0101 = PN 23 sequence 0110 = PN 9 0111 = one/zero word toggle 1000 = unused 1001 = unused 1010 = unused 1011 = unused 1100 = unused (Format determined by output_mode) CML 0 0 Analog enable: input disable: 1 = on 1 = on 0 = off 0 = off (default) (default) Data format select: 0 Output 00 = offset binary invert: (default) 1 = on 01 = twos 0 = off complement (default) 10 = Gray code
0x00
When set, the test data is placed on the output pins in place of normal data.
0x00
0x00
0x03
18
flex_vref
Output clock delay: 00000 = 0.1 ns 00001 = 0.2 ns 00010 = 0.3 ns ... 11101 = 3.0 ns 11110 = 3.1 ns 11111 = 3.2 ns Input voltage range setting: 10000 = 0.98 V 10001 =1.00 V 10010 = 1.02 V 10011 =1.04 V ... 11111 = 1.23 V 00000 = 1.25 V 00001 = 1.27 V ... 01110 = 1.48 V 01111 = 1.50 V
0x00
0x00
Rev. 0 | Page 26 of 36
GND P7 CONNECTS TO J2
GNDCD10
VSPI E32 E31 RN1 50_OHMS D10
C9 GNDCD8 GNDCD7 GNDCD6 GNDCD5 C5 C4 C3 C2 C1 A10 GNDCD4 GNDCD3 GNDCD2 GNDCD1 GNDAB10 GNDAB9 C8 C7 C6 D9 D8 D7 D6 D5 D4 D3 D2 D1 B10
E33 CSB DOR
C10 GNDCD9 D10 50 49 48 47 46 45 44 43 42 41 20
GND GND GND GND GND CSB_DUT D8 D6 1 16 DOR D4 D2 D0 DORB D11 D11B D10 D10B D9 D9B D11 D9
50_OHMS
P17 P16 P10 P9
SCLK_DTP SDIO_ODM
DORB D10B D8B D6B D4B D2B D0B
GND GND P1 GND GND
P5 P4 P3 P2
EVALUATION BOARD
2 15 14 13 12 11 10 9 3
R13 1K 4 5 6 7 8
CSB DRVDD GND
R10 1K E1 E3 E2 GND VSPI
VSPI AVDD GND E4 E5
E10
IN GND RN2
R12 10K
SW3 1 EVQ-Q2
20 19 18 17 28 27 26 25 24 23 22 21 16 15
ANALOG
2 1 D8 14 3 4 5 6 7 GND DRVDD 50_OHMS RN3 1 2 3 4
D1 D2 D2B
OUT
R11 1K
A9 A8
GNDAB8 GNDAB7
B9 B8
19 18
D11B D9B D7
A7 GNDAB6 B7 17
Alternate Options
D7B 16 15 14 13 12 11 10 D8 D8B D7 D7B D6 DCO D5 D3 D1
A6 A5 A4 A3 A2 A1 GNDAB5 GNDAB4 GNDAB3 GNDAB2 GNDAB1 B6 B5 B4 B3 B2 B1 16 15 14 13 12 11
D5B D3B D1B
Input
D11 D10 D9B DOR
6 2 4
T3 ADT1-1WT GND
D9
1
VSPI E9 E8 AVDD 30 31 12 11 10 9 8 7 6 AVDD 32 33 34 35 36 AVDD 37 38 39 40 AVDD 41
D0 DCOB CLKB DCO CLK D0B D1B DGND2 DVDD2
E7 29 AVDD_REF 13 RBIAS D7 D7B D6 D6B AVDD_PIPE5 AVDD_PIPE4 AVDD_PIPE3 AIN DGND DVDD D5 D5B AINB AVDD_PIPE2 AVDD_PIPE1 AVDD_PIPE CML AVDD_FL1 AVDD_FL
43 44 45 46 51 52 47 48 49 50
D11B
D10B
DORB
SPCSB
DVDD1
DGND1
5
RESETB PDN 2 D8B
SPSDIO/DCS SPSCLK/DFS
GND
5 2 4 CML
GND CML nc TINB GND TOUT
R7 33
3
PRI SEC C19 AMPOUT+ AVDD AVDD
DNP L8 0
TOUT CML TOUTB
R4 DNP GND 0.1UF
0.1UF C21
C16
T5
GND
1
60 40 59 39 58 38 57 37 56 36 55 35 54 34 53 33 52 32 51 31 30 10 29 9 28 8 27 7 26 6 25 5 24 4 23 3 22 2 21 1
DCOB HEADERM1469169_1 8 9 D6B GND
0.1UF C22 0.1UF GND
3 1
J2 R5 36 CML R6 36 GND
R16 33 optional C17
3
PRI SEC
L1 10NH
TINB
ETC1-1-13
T6
R9 DNP
U4 AD9626_CSP
0.1UF C18 AVDD 42 AVDD_CLK
CMLX
L9
PRI SEC ETC1-1-13
GND
5 2 4
E6 TOUTB GND AVDD AVDD
P11 CONNECTS TO J1
GNDCD10
16 15 14 13 5 12
D5 D5B D4 D4B D3
C10 GNDCD9 D10 C9 GNDCD8 D9 C8 C7 GNDCD7 GNDCD6 D8
50 49 48 D7 47 C6 GNDCD5 D6 46
0
C75
GND GND R1 R8 00 CLK 50
1 2 3
0.1UF
ENCODE
CLKCT
nc
GND
3 4
C15 0.1UF
CR3
CR2
2
1
PRI SEC
3
07099-053
C74 0.1UF
GND
Figure 54. AD9601 Evaluation Board Schematic Page 1
AVDD_CLK1
Rev. 0 | Page 27 of 36
AMPOUT5 D4 4 D4B 3 D3 2 D3B 1 PAD
53 54 55 56 57
R17 0 DNP CML
6 7
GND
11 10 8 9
D3B
C5 C4 C3 C2
GNDCD4 GNDCD3 GNDCD2 GNDCD1
D5 D4 D3 D2 C1 GNDAB10 D1
45 44 43 42 41
GND
AVDD
AVDD
DRVDD
CR2 TO MAKE LAYOUT AND PARASITIC LOADING SYMMETRICAL GND
CLK 1 2 3 4 VCLK 5 6 R85 10K 7
RN4 50_OHMS
A10 A9 A8
GNDAB9 B10 GNDAB8 B9 GNDAB7 B8
20 19
J3 T2 CLKCT DNP GND 0.1UF C23 R90 00
R14 DNP C20 DNP R89 00
16 15 14 13 12 11 10
18
D2 D2B D1 D1B D0 D0B CSB1_CHA
A7 A6 A5 A4 A3 A2
GNDAB6
B7 GNDAB5 B6 GNDAB4 B5 GNDAB3 B4 GNDAB2 B3 GNDAB1 B2
17 16 15 14 13 12
ADT1-1WT 1 6 5 2
SCLK_CHA SDI_CHA SDO_CHA
J4 GND GND XTALINPUT 4 OUTPUT NC VCLK 5 6 XTALINPUT CVHD_956 Crystek Crystal U6 VOLT_CONTROL TRI_STATE GND 1
R87
R3 50 R15 DNP
0
OPTIONAL ENCODE CIRCUITS
VOLT_CONTROL E18 2 3 E19 VCLK E20 GND
GND
DCO 8 GND R86 10K C61 0.1UF 9 DCOB
60 40 59 39 58 38 57 37 56 36 55 35 54 34 53 33 52 32 51 31 30 10 29 9 28 8 27 7 26 6 25 5 24 4 23 3 22 2 21 1
A1
B1
11
HEADERM1469169_1
VCLK
AD9626
AD9626
AVDD
C27
C65
C32 0.1UF
C30 0.1UF
C29 0.1UF
C33 0.1UF
C31 0.1UF
0.1UF C28
0.1UF
C62 0.1UF
C63 0.1UF
C64 0.1UF
0.1UF
0.1UF C70
POWER OPTIONS
GND
P8 GND DRVDD
C26
0.1UF
C24
C13
0.1UF
C67
C60
0.1UF
0.1UF
C69
0.1UF
C73 C68 0.1UF C72 C58 0.1UF 0.1UF C56
C14 10UF +
2
EGND
4 10UF VIN T1 GND GND
3
C9 C54
+
3
1
+ U7
C11
499 R2
C36 EGND 0.1UF GND GND GND H4 MTHOLE6 H3 MTHOLE6 AVDDX DRVDDX1 VSPIEXTX GND H2 MTHOLE6 H1 MTHOLE6 0.1UF
C35
C39 0.1UF C12 + 10UF
C34 0.1UF
C57
GND
VAMPX
GND
GND
C7
1UF
GND
GND
4
4
OUT
OUT
+5V 1.8V
OUT1 GND IN OUT1 VSPIEXTX GND
1.8V 3.3V
IN
OUT
OUT
IN
OUT1
GND
8
3
2
1
3
2
1
IN
OUT1
GND
3
2
1
7
3
2
1
6
GND
5
4
DRVDDX1
3
2
R88
1
L7
FERRITE
FERRITE
L4
L2
FERRITE
L5
FERRITE
VAMP1
AVDD1
FERRITE
L3
FERRITE
DRVDD1
VSPI
VSPIEXT1
VCLK
L6
07099-054
Figure 55. AD9601 Evaluation Board Schematic Page 2
C3 C1 1UF 4 4 1UF
P6 GND VSPIEXT1 GND DRVDD1 FERRITE L14 DRVDD 1.8V FERRITE L15 VSPIEXT 3.3V
ADP3338 U10 ADP3338 U12 GND GND ADP3338 U11
ADP3338 U9
GND
GND
GND
GND
VSPIEXTX
1UF
GND
VIN
AVDD1
FERRITE L13 GND VAMP1 FERRITE L12
VIN
AVDD
1.8V
VAMP
+5.0V
DRVDDX
0.1UF
EGND
0.1UF
10UF
VSPI VSPIEXT
0.1UF
0.1UF
1
2
0.1UF
C59
C66
U8
C25
10UF
VAMP
100PF
EGND
+
0.1UF
PJ-102A
VCLK
C71 0.1UF
C8 10UF
+
C5
1UF
Rev. 0 | Page 28 of 36
C4 AVDDX C10 1UF 1UF C2 VIN 0
C6
VAMPX
GND
1UF
VIN
10K 10K GND VAMP R43 R42
GND E14
R91 00 CML .1UF GND VAMP 25 R37 1 2 RGP VOP 11 R41 00 VIP VCC ENB VCM 16 GND 12 GND 15 14 13 C46
E13
E12
Operational Amplifier
C47 .1UF GND R94 00 T4 ADT1-1WT
1 6
.1UF GND
GND
R45 5
C37
00 R36
C40
DNP
P13 SMBMST TINB1
R35 DNP
L11 DNP
C44 DNP
TOUT2 RDP
GND GND
R40 DNP
C43 DNP
AMPOUT+
C76
R34
3 4
3 RGN VON 10
R46 00
DNP
AMPOUT-
nc PRI SEC
5
2
49.9 R33 R44 00 Z1
C41
00 R47
DNP
P12 SMBMST
DNP
AD8352
L10 DNP C45 DNP
4 RDN GND GND 6 GND 7 8 VCC 5 9 25 R38 VIN C42 .1UF R39 5 VAMP
TINB2 TOUTB2
AD9515 Logic Setup
VCLK GND S0
TINB1 5 2 4 GND GND TOUT2
T7
1
3
R64 00
TINB2 TOUTB2
PRI SEC ETC1-1-13
VCLK S1
R63 00
GND
R66 00
R65 00
VCLK S2
GND
R68 00
VCLK
R67 00
GND S3
R70 00
C53
CLK VCLK 0.1UF 100 R59 C50 CLK 0.1UF 240 R61 240 R60 VCLK S5
R69 00
R72 00
R71 00
R49 DNP
C49 DNP
R74 00
GND
RSET
P15 5 SYNCB
CLK CLKB
OUT0 OUT0B
R73 00
C48
0.1UF
R76 00
P14
VREF S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
GND C51 E17 0.1UF VCLK S7
R75 00
50 R48 00 R56 E15 00 R55
R50 DNP
6 7 8 9 10 11 12 13 14 15 16 25
R78 00
100 R58 C52 VCLK E16 0.1UF S8
GND
GND DNC; 27, 28 VCLK; 1, 4, 17, 20, 21, 24, 26, 29, 30 GND
R77 00
R80 00
R79 00
R82 00
R81 00
00
R83 00
R84
07099-055
S10
Figure 56. AD9601 Evaluation Board Schematic Page 3
Rev. 0 | Page 29 of 36
AD9515(Opt_Clk Circuit)
VCLK R62 4.12K
GND S4
GND
GND
SMBMST 2 3
00 R51
00 R53 GND 23 22 19 OUT1 OUT1B 18
00 R52
10K R54
GND
32
31
33
U1
GND_PAD
VCLK S6
GND
SMBMST
R57 00
AD9515
GND
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
GND
VCLK S9
GND
AD9626
GND VCLK
AD9626
CSB_DUT R24 1K SCLK_DTP VSPIEXT
07099-056
R25 1K
VSPI
VSPI
5 VCC GND 2 GND
VSPI 3 A2 R19 10K Y2 4
5
6
4
VCC
Y1
Y2
U5 NC7WZ07
GND
U3 NC7WZ16
A1
A2
1
2
R26 10K
GND
3
SPI CIRCUITRY
GND
SDIO_ODM
GND
R18 10K
1
A1
Y1
6
Figure 57. AD9601 Evaluation Board Schematic Page 4
Table 13. Bill of Materials
Qty 1 7 6 1 7 Reference Designator C1, C3, C4, C5, C6, C7, C10 C8, C9, C11, C12, C14, C55 C17 C27, C32, C33, C62, C63, C64, C71 C28, C29, C30, C31, C65, C70 C21, C22, C23, C24, C25, C26, C34, C35, C36, C39 CR4 CR2 F1 E1, E2, E3, E4, E5, E7, E8, E9, E10, E12, E13, E14, E31, E32, E33 J2, J3 L2, L3, L4, L5, L7, L12, L13, L14, L15, R88 P8 R1 R2 Package PCB 603 6032-28 402 402 Description PCB, AD9230 customer evaluation board, Rev. G Capacitor, 1 F, 0603, X5R, ceramic, 6.3 V, 10% Capacitor, 10 F, tantalum, 16 V, 10% Capacitor, 2.0 pF, 50 V, ceramic, 0402, SMD Capacitor, 0.33 F, ceramic, X5R, 10 V, 10% Vendor Moog Panasonic Kemet Murata Murata Part Number AD9230revG ECJ-1VB0J105K T491C106K016AS GRM1555C1H2R0GZ01D GRM155R61A334KE15D
6 10
402 402
Capacitor, 120 pF, ceramic, C0G, 25 V, 5% Capacitor, 0.1 F, ceramic, X5R, 10 V, 10%
Murata Murata
VSPIEXT
1 1 1 15
603 Mini 3P 1210
LED green, SMT, 0603, SS-TYPE Diode, 30 V, 20 mA Fuse, 6.0 V, 2.2 A trip current resettable fuse Connector, header, 0.1"
2 10
SMA end launch 1206
Connector, SMA PCB coax end launch, Johnson 142 Ferrite bead, BLM, 3 A, 50 @ 100 MHz
1 1 1
201 603
Power jack, male, 2.1 mm power jack dc Resistor, 100 , 0201, 1/20 W, 1% Resistor, 499 , 0603, 1/10 W, 1%
Rev. 0 | Page 30 of 36
R27 1K CSB1_CHA SCLK_CHA SDO_CHA SDI_CHA
GRM1555C1H121JA01J GRM155R71C104KA88D
Panasonic Agilent Tyco/Raychem Samtec
LNJ314G8TRA HSMS2812 NANOSMDC110F-2 TSW-150-08-G-S
Johnson Murata
142-0701-851 BLM31PG500SN1L
CUI Inc NIC Components NIC Components
CP-102A-ND NRC02F1000TRF NRC06F4990TRF
AD9626
Qty 2 2 6 4 7 Reference Designator R5, R6 R7, R16 R10, R11, R13, R24, R25, R27 R12, R18, R19, R26, R15, C16, C18, C19, C20, R89, R90 RN1, RN2, RN3, RN4 L1, L8, L9 P9, P10 SW3 T1 T2,T3 U3 U5 U7 U8 U11 U9, U12 U4 P7, P11 Package 402 402 402 402 402 Description Resistor, 36 , 0402, 1/16 W, 1% Resistor, 15 , 0402, 1/16 W, 5% Resistor, 1 k, 0402, 1/16 W, 1% Resistor, 10 k, 0402, 1/16 W, 5% Resistor, 0 , 0402, 1/16 W, 5% Vendor Panasonic Panasonic NIC Components NIC Components NIC Components Part Number ERJ-2GEJ360X ERJ-2RKF15R0X NRC04F1001TRF NRC04J103TRF NRC04ZOTRF
4 3 1 1 1 2 1 1 1 1 1 2 1 2
0402x8 603 805 EVQQ2F03W 2020 CD542 6-SC70 6-SC70 DO-214AA DO-214AB SOT-223 SOT-223 LFCSP56 HM-Zd PCB
Resistor array, SMT 0402; 0 , 1/4 W, 5%, RESNEXB-2HV Resistor, 0 , 0603, 1/10 W, 5% Resistor, 0 , 0805, 1/8 W, 1% Switch, light touch SMD Ferrite bead, 5 A, 50 V, 190 @ 100 MHz Transformer, 0.5 W, 30 mA IC, buffer, inverter, UHS dual SC70-6 IC, buffer, inverter, UHS dual OD out SC70-6 Diode, 50 V, 2 A Diode, 30 V, 3 A (SMC) Voltage regulator, 3.3 V, 1.5 A Voltage regulator, 1.8 V, 1.5 A AD9230 12-bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V ADC, LFCSP-56 Connector, 2-Pr, 10-column, high speed, HM-Zd, PCB-mounted Capacitor, tantalum, SMT 6032, 10 F, 16 V, 10% Capacitor, 0.1 F, ceramic, 10%
Panasonic NIC Components NIC Components Panasonic Murata Mini-Circuits Fairchild Fairchild Micro Commercial Micro Commercial Analog Devices Analog Devices Analog Devices Tyco
EXB2HV050JV NRC06ZOTRF NRC10ZOTRF P12937SCT-ND DLW5BSN191SQ2L ADT1-1WT+ NC7WZ16P6X NC7WZ07P6X S2A-TPMSTR-ND SK33-TPMSCT-ND ADP3339AKCZ-3.3 ADP3339AKCZ-1.8 AD9230BCPZ-xxx 6469169-1
Do not install the following: 0 C2, C54 TAJD 0 402 C15, C37, C38, C40, C41, C61, C42, C43, C44, C45, C46, C47, C48, C49, C50, C51, C52, C53, C39, C56, C57, C58, C59, C74, C75, C60, C66, C67, C68, C69, C72 0 CR1 Led_ss 0 CR3 Diode 0 805 0 E6, E15, E16, E17, E18, E19, E20 0 J1 10-pin header 0 J4 SMA 0 0 L6 P12, P13, P14, P15 1206
Kemet Murata
T491C106K016AS GRM155R71C104KA88D
LED green, USS type 0603 Schottky diode Connector, header, 0.1"
Panasonic Agilent Tyco/Raychem Samtec
LNJ314G8TRA HSMS2812 NANOSMDC110F-2 TSW-150-08-G-S
TSW-110-08-G-D Connector, PCB coax SMA end launch, Johnson 142 Inductor, 10 nH SMA
Samtec Johnson Murata Amphenol RF
TSW-110-08-G-D 142-0701-851 BLM31P500S ARFX1231-ND
Rev. 0 | Page 31 of 36
AD9626
Qty 0 Reference Designator R3, R14, R33, R34, R35, R48, R49 R42, R43, R54, R85, R86 R28, R29, R30, R31, R32 R37, R38 R39, R45 R58, R59 R60, R61 R8, R9, R17, R36, R40, R41, R44, R46, R47, R87, R50, R51, R52, R53, R55, R56, R57, R62, R63, R64, R65, R66, R67, R68, R69, R70, R71, R72, R73, R74, R75, R76, R77, R78, R79, R80, R81, R82, R83, R84 P1, P2, P16, P17 SW1 T4 T5, T6 U2 U6 U10 Z1 U1 P6 P6 sm-22 SOIC-8 Crystal SOT-223 16CSP4X4 16CSP8X8 Package 402 Description Resistor, 49.9 Vendor Susumu Part Number RR0510R-49R9-D
0 0 0 0 0 0 0
402 402 402 402 402 402 402
Resistor, 10 k Resistor, 5 k Resistor, 25 Resistor, 5 Resistor, 100 Resistor, 240 Resistor, 0
NIC Components NIC Components NIC Components NIC Components NIC Components NIC Components NIC Components
NRC04J103TRF NRC04F4991TRF NRC04F24R9TRF NRC04J5R1TRF NRC04F1000TRF NRC04J241TRF NRC04ZOTRF
0 0 0 0 0 0 0 0 0 0 0
805 EVQQ2F03W
Resistor, 0 Switch, light touch SMD Transformer, RF, 0.4 MHz to 800 MHz, SMD case style CD542 Balun PIC12F629 Cvhd_956 crystal Regulator AD8352 AD9515 8-pin power connector post 8-pin power connector top
NIC Components Panasonic Mini-Circuits M/A-Com Microchip Tech
NRC10ZOTRF P12937SCT-ND ADT1-1WT+ MABA007159-0000 PIC12F629-I/SN CVHD_956 ADP3339AKCZ-5.0
Wieland Wieland
Z5.530.0825.0 25.602.2853.0
Rev. 0 | Page 32 of 36
AD9626 OUTLINE DIMENSIONS
8.00 BSC SQ 0.60 MAX 0.60 MAX
43 42
0.30 0.23 0.18
56 1
PIN 1 INDICATOR
PIN 1 INDICATOR
TOP VIEW
7.75 BSC SQ
EXPOSED PAD (BOTTOM VIEW)
4.45 4.30 SQ 4.15
0.50 0.40 0.30
29 28
14 15
0.30 MIN 1.00 0.85 0.80 12 MAX 0.80 MAX 0.65 TYP 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF
112805-0
6.50 REF
SEATING PLANE
0.50 BSC
COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2
Figure 58. 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 8 mm x 8 mm Body, Very Thin Quad (CP-56-2) Dimensions shown in millimeters
ORDERING GUIDE
Model AD9626BCPZ-1701 AD9626BCPZ-2101 AD9626BCPZ-2501 AD9626-250EBZ1
1
Temperature Range -40C to +85C -40C to +85C -40C to +85C
Package Description 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CMOS Evaluation Board with AD9626BCPZ-250
Package Option CP-56-2 CP-56-2 CP-56-2
Z = RoHS Compliant Part.
Rev. 0 | Page 33 of 36
AD9626 NOTES
Rev. 0 | Page 34 of 36
AD9626 NOTES
Rev. 0 | Page 35 of 36
AD9626 NOTES
(c)2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07099-0-11/07(0)
Rev. 0 | Page 36 of 36


▲Up To Search▲   

 
Price & Availability of AD9626

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X